Sadržaj
- Složena godišnja stopa rasta
- Formula i izračun CAGR-a
- Što vam može reći CAGR
- Primjer kako koristiti CAGR
- Dodatne uporabe CGAR-a
- Korištenje CAGR-a od strane investitora
- Izmjena CAGR formule
- Glatka stopa ograničenja rasta
- Ostala ograničenja CAGR-a
- CAGR u odnosu na IRR
- Primjer kako koristiti CAGR
Što je složena godišnja stopa rasta - CAGR?
Složena godišnja stopa rasta (CAGR) stopa je prinosa koja bi bila potrebna da investicija naraste od početnog stanja do završnog stanja pod pretpostavkom da se profit reinvestira na kraju svake godine životnog vijeka ulaganja.
Formula i izračun CAGR-a
CAGR = (BBEB) n1 −1gdje: EB = završni saldoBB = početni saldo
Da biste izračunali CAGR investicije:
- Podijelite vrijednost ulaganja na kraju razdoblja s njegovom vrijednošću na početku tog razdoblja. Rezultat povisite na jedan eksponent podijeljen s brojem godina. Oduzmite ga od sljedećeg rezultata.
Ključni odvodi
- CAGR je jedan od najtačnijih načina za izračunavanje i utvrđivanje prinosa za sve što može s vremenom porasti ili pasti. Investitori mogu usporediti CAGR dvije alternative kako bi procijenili koliko je jedna dionica bila uspješna u odnosu na ostale dionice u grupi vršnjaka ili prema tržišnom indeksu.CAGR ne odražava investicijski rizik.
Što vam može reći CAGR
Složena godišnja stopa rasta nije stvarna stopa prinosa, već reprezentativna brojka. To je u osnovi broj koji opisuje stopu po kojoj bi investicija rasla da je svake godine rasla po istoj stopi, a profit se reinvestirao na kraju svake godine. U stvarnosti, ovakva izvedba nije vjerojatna. Međutim, CAGR se može koristiti za izglađivanje povrata kako bi ih se lakše razumjelo u usporedbi s alternativnim ulaganjima.
Primjer kako koristiti CAGR
Zamislite da ste uložili 10.000 američkih dolara u portfelj s dolje navedenim:
- Od 1. siječnja 2014. do 1. siječnja 2015. vaš je portfelj porastao na 13.000 USD (ili 30% u prvoj godini). 1. siječnja 2016., portfelj je iznosio 14.000 USD (ili 7.69% od siječnja 2015. do siječnja 2016.). 1. 2017., portfelj je završio s 19.000 USD (ili 35, 71% od siječnja 2016. do siječnja 2017.).
Možemo vidjeti da su stope rasta investicijskog portfelja iz godine u godinu bile posve različite, kao što je prikazano u zagradama.
S druge strane, složena godišnja stopa rasta izjednačava učinak ulaganja i zanemaruje činjenicu da su se 2014. i 2016. toliko razlikovale od 2015. godine. CAGR je u tom razdoblju bio 23, 86% i može se izračunati na sljedeći način:
CAGR = (10.000 $ $ 19.000) 31 -1 = 23, 86%
Složena godišnja stopa rasta od 23, 86% tijekom trogodišnjeg razdoblja ulaganja može pomoći investitoru da usporedi alternative za svoj kapital ili predvidi buduće vrijednosti. Na primjer, zamislite da investitor uspoređuje izvedbu dviju investicija koje nisu povezane. U bilo kojoj godini tijekom razdoblja, jedno ulaganje može rasti, a drugo pada. To bi mogao biti slučaj kada se uspoređuju visoko donosne obveznice s dionicama ili ulaganja u nekretnine s tržištima u nastajanju. Korištenje CAGR-a izjednačilo bi godišnji povrat tijekom razdoblja pa će dvije mogućnosti biti lakše usporediti.
Dodatne uporabe CGAR-a
Složena godišnja stopa rasta može se koristiti za izračunavanje prosječnog rasta pojedinačnog ulaganja. Kao što smo vidjeli u našem primjeru iznad, zbog nestabilnosti tržišta, godišnji rast investicije vjerojatno će se činiti neprimjerenim i neujednačenim. Na primjer, ulaganje može povećati vrijednost za 8% u jednoj godini, smanjiti vrijednost za -2% sljedeće godine i povećati vrijednost za 5% u sljedećoj. CAGR pomaže neometanom povratu kad se očekuje da stope rasta budu nestabilne i nedosljedne.
Usporedite ulaganja
CAGR se može koristiti za usporedbu ulaganja različitih vrsta jedna s drugom. Na primjer, pretpostavimo da je 2013. investitor stavio 10.000 USD na račun pet godina s fiksnom godišnjom kamatnom stopom od 1% i još 10.000 USD u dionički uzajamni fond. Stopa prinosa u dionički fond bit će neujednačena tijekom sljedećih nekoliko godina, pa bi bilo teško usporediti dvije investicije.
Pretpostavimo da na kraju petogodišnjeg razdoblja stanje na štednom računu iznosi 10.510, 10 USD i, premda je druga investicija neravnomjerno rasla, završni saldo u dioničkom fondu bio je 15.348, 52 USD. Upotreba CAGR-a za usporedbu dviju investicija može pomoći ulagaču da shvati razliku u prinosu:
Štedni račun CAGR = (10.000 USD 10.510, 10) 51 −1 = 1.00%
I:
Dionički fond CAGR = (10.000 USD 15.348, 52) 51 −1 = 8, 95%
Na površini, osnovni fond može izgledati kao bolje ulaganje s gotovo devet puta većim povratom štednog računa. S druge strane, jedan od nedostataka CAGR-a je što izravnavanjem povrata, CAGR ne može investitoru reći koliko je bio nepostojan ili rizičan.
Izvođenje zapisa
CAGR se također može koristiti za praćenje uspješnosti različitih poslovnih mjera jedne ili više tvrtki jedne pored drugih. Na primjer, tijekom petogodišnjeg razdoblja, tržišni udio CAGR-a velikih prodavaonica bio je 1, 82%, ali zadovoljstvo kupca CAGR u istom razdoblju iznosilo je -0, 58%. Na taj način, uspoređivanjem CAGR-a mjera unutar tvrtke otkrivaju se prednosti i slabosti.
Otkrivanje slabosti i snage
Usporedba CAGR-a poslovnih aktivnosti u sličnim tvrtkama pomoći će procijeniti konkurentske slabosti i prednosti. Na primjer, CAGR-ovo zadovoljstvo kupaca u Big-Saleu možda neće izgledati tako nisko u usporedbi s CAGR-om zadovoljstva kupaca SuperFast Cable od -6, 31% u istom razdoblju.
Korištenje CAGR-a od strane investitora
Razumijevanje formule koja se koristi za izračun CAGR-a uvod je u mnoge druge načine na koje ulagači ocjenjuju prijašnje prinose ili procjenjuju budući profit. Formula se algebarsko može pretvoriti u formulu kako bi se pronašla sadašnja vrijednost ili buduća vrijednost novca ili izračunala stopa prinosa.
Na primjer, zamislite da investitor zna da im je za školovanje djeteta u 18 godina potrebno 50.000 dolara, a danas imaju 15.000 dolara za ulaganje. Kolika treba biti prosječna stopa prinosa da bi se postigao taj cilj? Za izračun CAGR-a može se naći odgovor na ovo pitanje kako slijedi:
Potrebni povrat = (15 000 $ 50 000) 181 −1 = 6, 90%
Ova verzija CAGR formule samo je preuređena sadašnja vrijednost i jednadžba buduće vrijednosti. Na primjer, ako investitor zna da im treba 50.000 USD i smatraju da je razumno očekivati 8% godišnjeg povrata svoje investicije, mogli bi pomoću ove formule saznati koliko im je potrebno uložiti kako bi ispunili svoj cilj.
Izmjena CAGR formule
Ulaganje se rijetko izvršava prvog dana u godini, a zatim prodaje posljednjeg dana u godini. Zamislite investitora koji želi procijeniti CAGR od 10.000 dolara ulaganja koja je upisana 1. lipnja 2013. i prodana za 16.897, 14 dolara 9. rujna 2018. godine.
Prije nego što se može provesti izračun CAGR-a, ulagač će morati znati djelomični ostatak razdoblja držanja. Položaj su bili u 2013. godini 213 dana, cijelu godinu u 2014., 2015., 2016. i 2017. te 251 dan u 2018. Ova investicija održana je 5.271 godina, izračunato prema sljedećem:
- 2013 = 213 dana2014 = 3652015 = 3652016 = 3652017 = 3652018 = 251
Ukupni broj dana ulaganja održan je 1.924 dana. Da biste izračunali broj godina, podijelite ukupni broj dana sa 365 (1.924 / 365), što je jednako 5.271 godina.
Ukupni broj godina uloženih ulaganja može se staviti u nazivnik pokazatelja unutar formule CAGR na sljedeći način:
Investicija CAGR = (10.000 USD 16.897, 14 USD) 5.2711 −1 = 10.46%
Glatka stopa ograničenja rasta
Najvažnije ograničenje CAGR-a je to što izračunava uglađenu stopu rasta tijekom određenog razdoblja, zanemaruje volatilnost i implicira da je rast za to vrijeme bio stabilan. Povrati ulaganja u vremenu su neujednačeni, osim obveznica koje se drže do dospijeća, depozita i sličnih ulaganja.
Također, CAGR ne uzima u obzir kada investitor dodaje sredstva u portfelj ili povlači sredstva iz portfelja tijekom razdoblja koje se mjeri.
Na primjer, ako je ulagač pet godina imao portfelj i ubacio sredstva u portfelj tijekom petogodišnjeg razdoblja, CAGR bi bio napuhan. CAGR bi izračunao stopu prinosa na temelju početnog i završnog salda tijekom pet godina, te bi u osnovi računao deponirana sredstva kao dio godišnje stope rasta, što bi bilo netočno.
Ostala ograničenja CAGR-a
Pored izglađene stope rasta, CAGR ima i druga ograničenja. Drugo ograničenje prilikom procjene investicija je da, bez obzira koliko postojan rast tvrtke ili ulaganja bio u prošlosti, ulagači ne mogu pretpostaviti da će stopa ostati ista i u budućnosti. Što je kraći vremenski okvir korišten u analizi, manja je vjerojatnost da će realizirani CAGR ispuniti očekivani CAGR oslanjajući se na povijesne rezultate.
Treće ograničenje CAGR-a je ograničenje zastupljenosti. Recite da je investicijski fond vrijedio 100.000 USD u 2012., 71.000 u 2013., 44.000 u 2014., 81.000 u 2015. i 126.000 u 2016. Ako bi menadžeri fondova u 2017. godini predstavljali da je njihov CAGR bio nevjerojatnih 42, 01% u protekle tri godine, oni bi biti tehnički ispravni. Oni bi, međutim, propustili neke vrlo važne podatke o povijesti fonda, uključujući i činjenicu da je CAGR fonda u proteklih pet godina bio skromnih 4, 73%.
CAGR u odnosu na IRR
CAGR mjeri povrat ulaganja u određenom vremenskom razdoblju. Interna stopa povrata (IRR) također mjeri uspješnost ulaganja, ali fleksibilnija je od CAGR-a.
Najvažnija razlika je u tome što je CAGR dovoljno izravan da se može izračunati ručno. Suprotno tome, složenije investicije i projekti ili oni koji imaju mnogo različitih novčanih priliva i odljeva najbolje su procijeniti pomoću IRR-a. Za povratak na stopu IRR idealan je financijski kalkulator, Excel ili sustav računovodstva portfelja.
Primjer kako koristiti CAGR
Recimo da je investitor kupio 100 dionica dionica Amazon.com (AMZN) u prosincu 2015. za 650 USD po dionici, ukupne investicije od 65 000 USD. Nakon 3 godine, u prosincu 2018. dionice su porasle na 1.750 dolara po dionici, a ulaganje ulagača sada vrijedi 175.000 dolara. Koja je složena godišnja stopa rasta?
Pomoću CAGR formule znamo da trebamo:
- Završni saldo: 175 000 američkih dolara Početni saldo: 65 000 dolara Broj godina: 3
Dakle, da bismo izračunali CAGR za ovaj jednostavan primjer, te podatke bismo unijeli u formulu na sljedeći način:
CAGR za Amazon = (65 000 $ 175 000) 31 −1 = 39, 12%
To nam govori da je složena godišnja stopa rasta ulaganja u Amazon 39, 12%.